Hyperbolic Shirts fit a 4-body problem
نویسندگان
چکیده
منابع مشابه
Fit Body, Fit Mind?
I N B R I E F We are used to thinking of intelligence as largely a matter of genetic inheritance, but that is not the whole picture. What we do aff ects our mental wellbeing: staying physically and mentally active helps us stay sharp as we age. Nevertheless, our personal eff orts to bolster cognitive enhancement cannot forestall all declines in our cognitive performance. What is especially surp...
متن کاملA Hyperbolic 4-Manifold
There is a regular 4-dimensional polyhedron with 120 dodecahedra as 3-dimensional faces. (Coxeter calls it the "120-cell".) The group of symmetries of this polyhedron is the Coxeter group with diagram: For each pair of opposite 3-dimensional faces of this polyhedron there is a unique reflection in its symmetry group which interchanges them. The result of identifying opposite faces by these refl...
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملIntermittency properties in a hyperbolic Anderson problem
We study the asymptotics of the even moments of solutions to a stochastic wave equation with linear multiplicative noise. Our main theorem states that these moments grow more quickly than one might expect. This phenomenon is well-known for parabolic stochastic partial differential equations, under the name of intermittency. Our results seem to be the first example of this phenomenon for hyperbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2018
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2017.09.006